OnC*-Algebras Generated by Idempotents

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idempotents in Group Algebras

In this survey we collect and present the classical and some recent methods to compute the primitive (central) idempotents in semisimple group algebras. MSC 2010. 20C05, 20C15, 16S34, 16U60.

متن کامل

Vertex algebras generated by Lie algebras

In this paper we introduce a notion of vertex Lie algebra U , in a way a “half” of vertex algebra structure sufficient to construct the corresponding local Lie algebra L(U) and a vertex algebra V(U). We show that we may consider U as a subset U ⊂ V(U) which generates V(U) and that the vertex Lie algebra structure on U is induced by the vertex algebra structure on V(U). Moreover, for any vertex ...

متن کامل

The semigroup generated by the idempotents of a partition monoid

We study the idempotent-generated subsemigroup of the partition monoid. In the finite case this subsemigroup consists of the identity and all the singular partitions. In the infinite case, the subsemigroup is described in terms of certain parameters that measure how far a partition is from being a permutation. As one of several corollaries, we deduce Howie’s description from 1966 of the semigro...

متن کامل

Simple Conformal Algebras Generated by Jordan Algebras

1 Background and Motivation We start with an example of affine Kac-Moody algebras and the Virasoro algebra. In this talk, F will be a field with characteristic 0, and all the vector spaces are assumed over F. Denote by Z the ring of integers and by N the set of nonnegative integers. Let 2 ≤ n ∈ N. Set sl(n,F) = {A ∈ Mn×n(F) | tr A = 0}, (1.1) 〈A,B〉 = tr AB for A,B ∈ sl(n,F), (1.2) where Mn×n(F)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1996

ISSN: 0022-1236

DOI: 10.1006/jfan.1996.0048